Cardiac Symptoms of Myotonic Dystrophy

Saman Nazarian, MD, PhD Cardiac Electrophysiologist University of Pennsylvania School of Medicine

Disclosures

- Grant Funding
 - National Institutes of Health
 - Patient-Centered Outcomes Research Institute
 - Biosense-Webster
 - Siemens
 - ImriCor
- Scientific Advisor
 - CardioSolv
 - Circle Cardiovascular Imaging

Myotonic Dystrophy and the Heart: Overview

- Cardiac manifestations physiologically due to
 - Myocardial fatty infiltration
 - Fibrosis
- Typical Cardiac clinical manifestations
 - Conduction disturbances and block ^{30%}
 - Atrial Tachy-arrhythmias
 - Cardiac Dysfunction
 - Ventricular Tachy-arrhythmias

Genetic Basis of DM

• Type I

• CTG repeat expansion in 3' untranslated region of the Myotonic Dystrophy Protein Kinase (DMPK) gene on chromosome 19

- Normal: 5-35 repeats
- In DM
- Serine-threonine protein kinase
- Type II
 - Mutations of the CCTG repeat on the zinc finger protein 9 gene on chromosome 3
 - Normal: 11-26 repeats

Mechanism of Cardiac Manifestations

- Repeat sequences are transcribed to RNA but not translated
- The RNA accumulates in the cellular nucleus and disrupts the splicing of pre-messenger RNA into mature mRNA
 - Muscle specific chloride channel
 - Insulin receptor
- MDPK in the myocardium is localized to the intercalated discs

Sinus Node Histology

• Fibro-Fatty Replacement

Lymphocytic Infiltration

AV Node Histology

• Fibrosis

Fibrofatty Infiltration and Atrophy

Bundle Branch Histology

- LB Fibrosis
- RB Fibrosis and Atrophy

Myotonic

Left Ventricular Histology

- Patchy Replacement Fibrosis
- Patchy Fibro-Fatty Replacement

Electrocardiography

William Einthoven's 1901 Electromagnetic String Galvanometer

Cardiac Conduction System

ECG Abnormalities at Presentation

Longitudinal Trends in PR Interval

MM

The mean PR interval increased from 185 ± 21 to 191 ± 26 msec (7% stable, 38% decrease, 55% increase).

Longitudinal Trends in QRS Interval

Sixty one percent of all patients exhibited a nonspecific intraventricular conduction delay. Of the remaining 39%, 6 (8%) patients had left bundle branch block, 2 (3%) had left anterior fascicular block, 1 (1%) had right bundle branch block, and the remaining had normal QRS duration. The mean QRS interval increased from 113 ± 27 to $116 \pm$ 33 msec (12% stable, 41% decrease, 47% increase).

Longitudinal Trends in QTc Interval

(NN)

The QTc interval increased from 430 ± 34 to 436 ± 44 msec (2% stable, 37% decrease, 61% increase).

Assessment of Heart Function

Prevalence of LV Dysfunction

Danish National Experience

.....

		Main E cohort	D M	DM1 subco	hort	
		N = 1	N = 1146		N = 485	
		n	%	n	%	
4	Sex					
	Male	609	53.1	236	48.7	
	Female	537	46.9	249	51.3	
	Age at diagnosis of myo	tonic dystrophy	1			
	0–14 years	124	10.8	51	10.5	
	15–29 years	214	18.7	107	22.1	
	30–44 years	321	28.0	145	29.9	
	45–59 years	340	29.7	132	27.2	
	60-74 years	130	11.3	46	9.5	
	75+ years	17	1.48	4	0.8	

² Myotonic

1800(

	Main I cohor	D M t	DM1 subcol	hort	
	N = 1146		N = 4	N = 485	
	n	%	n	%	
Calendar year at diagnosis of	f myotonic	dystrophy			
1977–1978	53	4.62	0	0	
1979–1982	113	9.86	7	1.4	
1983–1986	76	6.63	3	0.6	
1987–1990	70	6.11	8	1.6	
1991–1994	102	8.90	24	4.9	
1995–1998	93	8.12	34	7.0	
1999-2002	203	17.7	108	22.3	
2003-2006	178	15.5	118	24.3	
2007–2011	258	22.5	183	37.7	
Died during follow-up for Any Cardiac Disease ^b	224	b	44	b	

Danish National Experience

Standard Incidence Ratio (SIR) compared to the background population for CM, CCD, arrhythmia, HF, CRM device

Lund et al. Eur Heart J 35:2158-64, 2014.

Sudden Death

- Mostly due to "heart block"
- Implantation of a pacemaker protects against this risk

- Rarely sudden death may be due to VT/VF
- Implantation of a defibrillator protects against this risk

Myotonic Dystrophy - our experience

Variables	(N=168)
Age at diagnosis	37.6 ± 16.9
Duration of follow up (years)	5.2 ± 4.9
Male gender	77 (45.8%)
Type of DM	
Туре І	136 (81.0)
Type II	28 (16.7)
Family History of Sudden Cardiac Death	31 (18.5)
CTG (MD type 1, N=80)	476 (196-795)
Medications	
Mexiletine	22 (13.1)
ASA	39 (23.2)
Betablocker	22 (13.1)
Statin	37 (22.0)

Myotonic

Myotonic Dystrophy - our experience

Variables	(N=168)					
Echocardiogram						
Ejection fraction	52.9 ± 12.2					
LVEDD	4.5 ± 0.6					
LV dysfunction during follow up (EF <50%)	20 (11.9)					
Electrocardiogram on the initial visit						
HR	68.7 ± 15.1					
PR	179.5± 29.2					
QRS	109.0 ± 28.8					
QT	434.6 ± 35.1					
QRS axis	9.31 ± 48.5					

Predictors of Cardiac Dysfunction - our Experience

Variables	Adjusted Odds Ratio (95% CI)	P value
Age at diagnosis		
(Year)	-0.03 (-0.34 - 0.28)	0.86
MMD type II	-19.00 (-35.30 - (-2.71))	0.02
Gender	-2.39 (-11.73 - 6.9)	0.62
Heart rate (bpm)	-0.05 (-0.35 - 0.25)	0.74
PR (ms)	-0.01 (-0.10 - 0.07)	0.81
QRS interval (per 10		
ms)	-3.45 (-4.87 - (-2.03))	<0.01
MuotoniQT (ms) • After ~5	years follow0gp(-0.08 - 0.15)	0.57
QRS axis (degree) dy	ysfunction101%-0.08 - 0.10)	0.17

Predictors of Longitudinal PR, QRS, and QTc Interval Changes (After Adjusting for Heart Rate) in the Multivariate Random Effects Model

	PR Inter	val	QRS Interval		QTc Interval	
Variable (unit)	Regression Coefficient	Р	Regression Coefficient	Р	Regression Coefficient	Р
Time	+8.7 msec / 1000 days	0.009	+3.3 msec / 1000 days	NS	+5.6 msec / 1000 days	NS
Age	+6.8 msec / 10 years	0.001	+9.3 msec / 10 years	< 0.001	+10.4 msec / 10 years	< 0.001
Female	-16.5 msec	0.047	+4.8 msec	NS	+26.3msec	0.009
Number of CTG repeats	+3.3 msec / 100 repeats	0.021	+4.7 msec / 100 repeats	< 0.001	+1.9 msec / 100 repeats	NS
Family History of Sudden Death	-13.6 msec	NS	+18.1 msec	0.006	+16.5 msec	NS
NYHA Class	-13.6 msec	NS	-2.0 msec	NS	+12.4 msec	NS
Paroxysmal atrial fibrillation or flutter	+44.8 msec	<0.001	+14.9 msec	0.027	+ 12.6 msec	NS
Left Ventricular Ejection Fraction	+0.7 msec / 10% increase	NS	-16.6 msec / 10% increase	<0.001	-13.1 msec / 10% increase	0.002

Results for a given variable simultaneously and reciprocally adjusted for all other variables in the table.

Multicenter Data - 406 Patients with DM1

Myotonic

		Characteristic	Sudden Death	
			Relative Risk (95% CI)	P Value
		Age†	1.16 (0.76-1.75)	0.50
		Muscular-impairment score‡		
		1 or 2		
		3		
		4		
		5		
		Heart failure		
•	PR > 240 ms	Atrial tachyarrhythmia	5.18 (2.28-11.77)	< 0.001
•	QRS > 120	Pacemaker	1.35 (0.51-3.56)	0.54
•	2nd or 3rd degree AV bloc	Kventricular tachyarrhyth- mia		
		Severe ECG abnormality§	3.30 (1.24-8.78)	0.02

NEJM 2008 Jun 19;358(25):2688-97

Atrial Fibrillation

- Possibly due to regions of atrial fibrosis
- Likely exacerbated by Sleep Apnea
- Risk factors
 - Age
 - Male gender

Atrial Fibrillation

- Symptoms
 - Palpitations
 - Fatigue
- Thrombus formation
 - O Stroke

In DM – Most important as predictor of future risk

Other Tools for Cardiac Risk Stratification

- Longer Duration of ECG monitoring
 - Holter 24hr, 48hr, 7 days
 - Implantable loop monitors

Signal Averaged ECG

Not particularly useful if QRS prolongation present

Electrophysiology Study

Electrophysiology Study

Ventricular Tachycardia

Is EP Testing Useful?

- Does EP study and prophylactic pacing improve survival compared to non-invasive management
 - Retrospective study: 2000-2009
 - Single tertiary center in Paris
 - >18 yrs
 - Genetically confirmed DM1

Is EP Testing Useful?

JAMA. 2012;307(12):1292-1301

Is EP Testing Useful?

- 150 pacemakers and 14 ICDs implanted
- No appropriate shocks

JAMA. 2012;307(12):1292-1301

MRI – LV Function

MRI – Scar

MRI – Diffuse Scar

• Accumulation of gadolinium in fibrotic tissue attenuates the T₁ relaxation time proportional to the extent of fibrosis Magn Reson Med. 2011 May;65(5):1407-15

Differences in Cardiac Function & Volumes

	MMD-1	MMD-2	All MMD Patients	Healthy Volunteers
	N=24	N=9	N=33*	N=13
	Mean±SD or	Mean±SD or	Mean±SD or	Mean±SD or
	% (n)	% (n)	% (n)	% (n)
Left Ventricular Parameters				
LV mass index (g/m ²)	56.8 ± 12.8	62.7 ± 12.9	58.6 ± 12.9	58.9 ± 5.4
LV end-diastolic volume index (ml/m^2)	58.1 ± 17.8 ^s	65.7 ± 16.6	60.3 ± 17.6	68.9 ± 9.7
LV end-systolic volume index (ml/m ⁻)	23.9 ± 11.9	26.0 ± 11.5	24.5 ± 11.7	25.7 ± 5.9
Mass/ volume Ratio Strate volume index $(m1/m^2)$	1.0 ± 0.2	1.0 ± 0.2	1.0 ± 0.2	0.87 ± 0.2
Stroke volume index (m/m)	$34.2 \pm 0.9^{\circ}$ 2 2 + 0.6 ¶§	39.7 ± 0.1 2.6 ± 0.3	33.0 ± 0.4 2 33 + 0.6 ⁸	43.2 ± 3.2 2 7 + 0 3
Fiection Fraction (%)	59.6 + 8.4	2.0 ± 0.5	2.33 ± 0.0 60 2 + 7 9	2.7 ± 0.5 63.0 + 5.1
Ejection Fraction <55% (yes)	31.8 (7) [§]	11.1(1)	$\begin{array}{c} 00.2 \pm 7.9 \\ \textbf{25.8 (8)}^{\delta} \end{array}$	0.0 ± 0.1 0 (0)
Right Ventricular Parameters				
RV end-diastolic volume index (ml/m_2^2)	62.9 ± 12.9 [§]	72.8 ± 14.9	$65.8\pm\!\!14.0$	72.0±9.7
RV end-systolic volume index (ml/m^2)	28.7 ± 7.3	33.0 ± 10.8	29.9 ± 8.5	30.6 ± 4.6
RV Stroke volume index (ml/m ²)	34.2 ±8.6 ^s	39.8 ± 6.4	$35.8 \pm 8.3^{\circ}$	41.4 ± 5.9
RV Ejection Fraction (%)	54.3 ±7.3	55.4 ± 5.8	54.6 ± 6.8	57.5 ± 3.0
Atrial Volumes				
Left atrial volume index (ml/m ²) Right atrial volume index (ml/m ²)	29.9 ± 6.7 23.4 ± 6.5 [§]	$\begin{array}{c} 38.1 \pm 13.2 \\ 32.9 \pm 11.5 \end{array}$	$\begin{array}{c} 32.3 \pm 9.6 \\ \textbf{26.0} \pm \textbf{9.1}^{\delta} \end{array}$	$\begin{array}{c} 34.1\pm4.9\\ 34.9\pm7.5\end{array}$

¶ P<0.05 MMD-1 vs. MMD2; § P<0.05 MMD-1 vs. healthy volunteers; \ddagger P<0.05 MMD-2 vs. healthy volunteers; δ P<0.05 total MMD patients vs. healthy volunteers

T1 Time in MMD Patients & Controls

The mean myocardial T1 time of MMD patients was significantly shorter than control subjects (394.5 ± 57.6 ms vs. 441.4 ± 32.0 ms, respectively; p<0.0001)

MRI Results

- Parameters that are lower in DM compared to controls
 - LV end-diastolic volume index
 - Stroke volume and cardiac index
 - Myocardial T1 relaxation time
- Among MMD patients, those with severe conduction disease had longer myocardial T1 times
- These findings suggest
 - 1. The early presence of diffuse myocardial fibrosis in patients with MMD
 - 2. Greater edema, fat, and/or inflammatory infiltration in advanced disease states

Current Evaluation of the Asymptomatic DM Patient

Adapted from: IJC 184 (2015) 600–608

Summary

- Myotonic dystrophy
 - 1/3 of deaths are sudden
 - Related in most cases to AV block
- Patients with AF and severe ECG abnormalities are at higher risk of progression to AV block
- EPS +/- PPM implant appears warranted in patients with syncope or evidence of conduction disease
- Role for ICDs is unclear

Thank you!

